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Abstract. We consider the pivot algorithm for polygons on the face-centred cubic lattice 
and prove ergodicity. A numerical study of the algorithm is carried out; in particular, we 
look at the acceptance fraction of the elementary moves and find that it goes only slowly 
to zero as the length of the polygons is increased. The numerical properties of polygons 
on the FCC lattice are also considered. We calculate the exponent U (by considering the 
mean square radius of gyration of the polygons) and compare the result to the expected 
value (from field theory). We also consider the mean span of the polygons and discuss 
corrections to scaling and their influence on the numerical calculation of critical exponents. 

1. Introduction 

The numerical simulation of the self-avoiding walk has received much attention in 
recent years. The reasons for the popularity of this model are its simplicity, and its 
close relation to complex problems in chemistry (as a model for polymers), physics 
(due to its relation to the ( n  = 0) n-vector model) and mathematics (as an example of 
a non-Markov probability model). 

Over the last thirty years, progress in the simulation of self-avoiding walks has 
been steady, due to the improvement in computer technology, and also due to the 
invention of more effective algorithms. La1 (1969) invented an interesting algorithm 
for the simulation of self-avoiding walks in the canonical ensemble which was used 
by Olaj and Pelinka (1976) and rediscovered by MacDonald et a1 (1985). Apart from 
these studies, the algorithm received little attention until it was studied in detail by 
Madras and Sokal (1988), who called it the pivot algorithm and showed that it is 
extraordinarily efficient in the simulation of self-avoiding walks. Continuum versions 
of the pivot algorithm can be found in the work of Stellman and Gans (1972a, b) and 
of Freire and Horta (1976). 

While there has been significant development in the simulation of self-avoiding 
walks in the canonical ensemble since the early 1960s, it is only recently that significant 
progress has been made in the simulation of polygons (we define a polygon to be a 
walk which starts and ends at the origin, and is otherwise self-avoiding). The interest 
in polygons goes back to about 1960 (Hammersley 1961, Kesten 1963). The numerical 
simulation of polygons proved more difficult than that of walks, mainly due to the 
absence of effective algorithms. This state of affairs frustrated the numerical studies 
of closed polymer chains on the lattice with specific application in, for example, biology 
(Frank-Kamenetskii er a1 1975, Michels and Wiegel 1986 and Sumners 1987). Most 
results on polygons come from exact enumeration studies. Here, the effort was concen- 
trated on the square and cubic lattice (Martin et a1 1967, Privman and Rudnick 1985, 
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Guttmann and Enting 1988) although the honeycomb lattice (Enting and Guttmann 
1989) and the face-centred cubic ( FCC) lattice (Rapaport 1975) also received attention. 

Madras er a1 (1989) proved that a 'pivot algorithm' can be applied to polygons on 
the cubic lattice, extending the two-dimensional result of Dubins et a1 (1988). In this 
paper we set out to study the properties of the pivot algorithm for polygons on the 
FCC lattice. To prove that the algorithm is ergodic on the FCC lattice is an interesting 
problem which we address in this paper. We are also interested in the numerical 
properties of the algorithm. In particular, we look at the acceptance fraction ( f )  of 
the proposed elementary moves and the autocorrelations of several observables. 

We also study the properties of polygons on the FCC lattice. Of particular interest 
are scaling exponents, and corrections to scaling. The numerical values of the scaling 
exponents were calculated using field theory methods (Le Guillou and Zinn-Justin 
1980,1989), and we can compare our results to those predictions. We consider polygons 
of length almost 3000 edges, enabling us to expose the scaling behaviour of the quantities 
that we calculate. 

This paper is organised as follows. In section 2 we describe the algorithm. In 
particular, we define the elementary pivot transformations of the algorithm and discuss 
their reversibility. In section 3 we prove that the algorithm is ergodic on the FCC lattice 
provided that a certain set of elementary transformations have non-zero probability 
of occurring. The initialisation of the algorithm is discussed in section 4. Furthermore, 
we look at the relative frequencies of successful elementary transformations as we 
increase the number of vertices in the polygon ( n ) .  The acceptance fraction (f) of the 
algorithm is known to go to zero as n goes to infinity, but our numerical data imply 
that this happens only slowly. In fact we expect thatf- n - p  where p is a small number, 
and we find p = 0.247 f 0.004 * 0.001 (where the format is p * systematic error k statis- 
tical error, the statistical error is the 95% confidence limits). The computational 
efficiency of the algorithm is also considered. We define the mean amount of work 
per attempted transformation and find that it increases as n", where the numerical 
data indicate that w = 0.858 i 0.001 * 0.002. 

In section 5 we consider the properties of polygons on the FCC lattice. We calculate 
four global quantities and their autocorrelations: the mean square radius of gyration, 
the mean span, the mean fourth moment of the radius of gyration and the mean of 
the square span divided by the square radius of gyration. A least-squares analysis of 
the radius of gyration data gives v = 0.593 * 0.003 * 0.002, close to the value found by 
Madras and Sokal (1988) for the self-avoiding walk. We show that the MC data are 
consistent with the field theory value v = 0.588 * 0.002 if there is a correction-to-scaling 
exponent A = 0.470 f 0.025. We also consider the span of the polygons; we find large 
corrections to scaling, so that it is impossible to find a good estimate for Y from these 
data. 

Assuming the field theory values of the critical exponents, it is possible to calculate 
the amplitudes of the mean square radius of gyration and the mean span. The belief 
that there is only one length scale in this problem can be tested by considering a ratio 
of the span and the radius of gyration of the polygons. We consider the mean of the 
square span divided by the square radius of gyration, which we believe will depend 
on n as 

where s is the span and r2 is the square radius of gyration of the polygon. a is believed 
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to be lattice independent. If we assume that A = 0.47, then a least-squares analysis 
gives a = 5.69 f 0.02 (95% confidence limits). We also consider the mean fourth moment 
of the radius of gyration, (r4). If we assume that for large n it scales as ny4, then our 
best estimate for this critical exponent is 2.375*0.004*0.004. This number is, to a 
good approximation, equal to 41, (see also Rapaport 1975). We end the paper with a 
few conclusions in section 6. 

2. The pivot algorithm for polygons on the FCC lattice 

A polygon, or self-avoiding polygon, is defined to be a sequence of lattice sites w o ,  
w ,  , . . . , w,, and associated edges, such that: wo = U,, wi and wi+ ,  are neighbours in 
the lattice, and w , ,  w 2 , .  . . , w ,  are all distinct. In two dimensions, a convex polygon 
refers to the following classical geometrical object: a finite union of straight line 
segments which forms the boundary of a convex subset of the plane. 

The basic elementary move of the algorithm is as follows. Choose two different 
pivots (vertices of the current polygon) at random with (for example) a uniform 
distribution (this is a sufficient condition, but not necessary), say rl and r2 .  This can 
be done in i n ( n  - 1) ways. With these pivots, apply an elementary transformation 
from a list of possible transformations to the shorter piece of the polygon (or alterna- 
tively, to the piece not containing the origin). If the result is a self-avoiding polygon 
then it is accepted, becoming the current polygon. Otherwise it is rejected, and the 
current polygon does not change. 

2.1. Elementary transformations 

Let {e,} be the three orthogonal unit vectors in H3 (e, = (1,0, 0), e2 = (0,1,0) and 
e3 = (0, 0, 1)). In this paper, we view the FCC as a sublattice of H3 generated by the 
three primitive vectors (e ,  + e2) ,  (e, + e3)  and (e, + e3) .  In this description, the FCC has 
coordination number 12 and edges of length a. We define the principal axes of the 
FCC as those of Z3, generated by the vectors e,, and the lattice planes as those planes 
generated by pairs of vectors (e,, e,). We can also define planes inclined at 45" to two 
of the three lattice planes; these are generated by the vectors (e, f e,, e k )  with i, j ,  k all 
unequal, and are called 45" planes. 

The possible elementary transformations are given by the octahedral group, which 
is the symmetry group of the cubic lattices. For ergodicity we do not need all the 
possible transformations, but only a few, as we shall show in section 3. In our numerical 
simulation we considered only the following transformations: point reflections (inver- 
sion), reflections through lattice planes, reflections through 45" planes and 90" rotations 
about lattice axes. In each case the 'origin' of the transformation is taken to be the 
midpoint of the line segment joining the two pivots. With each possible pair of pivots 
it may not be possible to perform all the transformations. For example, if the two 
pivots are on the same principal axis, then we can perform an inversion, or one of 
three possible lattice plane reflections, or one of two possible 45O-piane reflections or 
one of two possible 90" rotations; if the two pivots are on the same lattice plane, then 
we can perform either an inversion or a lattice plane reflection; and so on. 

Let the coordinates ofthe vertex w,  ( inh3)  be w, = ( x ( w , ) ,  y ( w , ) ,  ~(0,)). Suppose 
that r, < r2 are the chosen pivots on a polygon w. Firstly, an inversion of the segment 
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of the polygon between the two pivots defines a new configuration 

if m S rl or m 3 r2 
if r ,  < m < r 2 .  ~ r , + ~ r ~ - ~ r , + r ~ - m  

Since the pivots are left unchanged, it is always possible to attempt an inversion. 
Secondly, a 90" rotation about the ek axis is possible if the two pivots are both on this 
axis. The rotation may be either clockwise or anti-clockwise; we refer to a 90" rotation 
or a -90" rotation. The third and fourth possibilities are 45"-plane reflections and 
lattice plane reflections. For these to be possible, either wrI  and wr2 must both be in 
the plane of reflection, or else wrI  must be the image of wr2 under the reflection. 

We shall now discuss detailed balance for the algorithm. For any given polygon 
w and any two given pivots r l  and r2 ,  we have in general several possible elementary 
moves that we may attempt. Let p ( t ;  x, y )  be the probability of attempting the 
elementary transition t given that the pivots are at sites x and y. Observe that for each 
t, p depends only on the relative locations of x and y (i.e., whether they lie on the 
same principal axis, or on the same 45" plane, etc). Suppose that w and w'  are n-step 
polygons such that o' can be obtained from w by the transformation t with pivots rI 
and r z .  Then the probability of going from w to w'  via transformation t is equal to 
p (  rl , r2)p(  t ;  w,, , U,*), where p (  r, , r 2 )  is the probability of choosing rl and r2 as pivots 
(e.g., in the uniform case, p ( r l ,  r2 )  = 2 / n ( n  - 1)). Since w i l ,  w i 2  is the same pair of 
points as U,, , wr2 (possibly interchanged), it follows that p ( t ;  U,, , U,,) = p (  t ;  m i l ,  w i 2 ) ,  
Note that every elementary transformation, except for 90" rotations, is its own inverse. 
The inverse of a 90" rotation is a -90" rotation. To have detailed balance, we have to 
put the probability of a 90" rotation equal to that of a -90" rotation. This means that 
~ ( t , x , y ) = ~ ( t - ' , x , y ) ,  and SO ~ ( r l ,  r 2 ) p ( t ;  w r l , w r 2 ) = P ( r l ,  r z ) p ( t - ' ;  wk,,wkJ. There- 
fore, summing over all rl and r 2 ,  and t that transform w into U ' ,  we conclude that 
p ( w  + U ' )  = p ( o ' +  U ) .  

In simulations in this paper, p (  r l  , r2) is uniform, and p(  t ;  x, y )  is the reciprocal of 
the possible number of elementary moves for the pivots at x and y. (Another easily 
implemented scheme, though less efficient, would be to take p independent of x 
and y.) 

Once a new configuration is proposed by the elementary moves it is accepted into 
the ensemble if it is self-avoiding. The most efficient way of checking the self-avoiding 
condition is through the use of a data structure known as a 'hash table' (Knuth 1973, 
Horowitz and Sahni 1976), as set out in Madras and Sokal (1988). 

2.2. Description of the algorithm 

The pivot algorithm for polygons is a MC algorithm (Metropolis et a1 1953) simulating 
polygons in the canonical ensemble (with a fixed number, n, of vertices). Let R, be 
the set of all polygons with n vertices, one vertex fixed at the origin. Let the cardinality 
of R, be p , .  Then it is believed that 

(2 .2)  
where p is the effective coordination number of the lattice, and asing is the specific 
heat critical exponent. An equal weight is assigned to each polygon in R,. The 
algorithm has a finite state space R,  and an invariant probability measure 

p ,  - n a b t n g - 2  P 

Tu = p i '  V w  E R,. (2.3) 
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The basic elementary transition is described by a transition probability matrix P = 
{ p ( w  + v)} = { p,”}  which has the following properties. (i)  For each w, v E R, there 
exists an m 3 0 such that the m-step transition probability from o to U, pwu(m) ,  is 
positive. This is called ergodicity; we prove it in section 3. (ii) For each polygon 
w E R,, ZwaR,, ~ , p , , ,  = T”.  This is true for the pivot algorithm where T~ is defined by 
equation ( 2 . 3 ) .  

Should these conditions be true, then it can be shown that T, is the unique limit 
distribution of the Markov chain with state space R, and transition probability matrix 
P (Kemeny and Snelll976). Let the observed states of the Markov chain be represented 
by Xi. The states Xi and X j  are in general correlated, so that the calculation of error 
bars of a real-valued function A ( o ) ,  w E R,,  is a complicated procedure. If we start 
the Markov chain in equilibrium then { A , }  = { A ( X , ) }  is a stationary stochastic process 
with mean 

and unnormalised autocorrelation function 

We define the normalised autocorrelation 

Once the distribution is in equilibrium, we define the integrated autocorrelation time 
qnt .  This autocorrelation time controls the statistical error in MC measurements of 
( A , ) .  It is defined by 

and the variance in the sample mean, A, over N observations, is asymptotically 

1 
N -- (2rint(A))cAA(o)* ( 2 . 8 )  

In other words, the effective number of independent observations is N/2 . r in t (A) .  

3. Ergodicity 

We split the proof of ergodicity into two parts. First we prove that the algorithm is 
ergodic in a two-dimensional sublattice of the FCC, then we prove ergodicity in three 
dimensions. We begin with a few definitions and by defining some notation. 

Let no be the plane in R3 generated by the unit vectors e, and e2. Then non FCC = 2Z2 
(where the vertex set of 2k2is{(x, y )  E H21x f y is even}) is a sublattice of the FCC which 
is the square lattice with edge length fi. We shall also consider projections of the 
FCC onto no. If we define the dual of 2H2 to be (2Z2)*, then all the vertices of the 
FCC are projected onto the vertices of the lattice 2 Z 2 u ( 2 k 2 ) * ,  while the edges are 
projected onto edges of length f i  if they connect vertices in either 2H2 or in its dual, 
or onto edges of length 1 if they connect a vertex in 2H2 to a vertex in the dual lattice. 
This situation is illustrated in figure 1. 
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0 . 0 . 0 . 0  

n o  

e1 

Figure 1. The projection of a polygon on the plane no. The full circles are elements of 
the lattice 2Z2 while the open circles represent the dual o f  2Z2. The convex hull of the 
projection is also indicated. 

3.1. Ergodicity in the lattice 2Z2 

Only a polygon with an even number of vertices can be embedded in 2Z2. If a polygon 
has an odd number of vertices, then we can put each vertex of the polygon, except 
for one, in this lattice; the last vertex can be left in the plane with third component 
just above or below a dual vertex in no. It is easy to see that this odd vertex can be 
moved around at will by applying inversions and lattice-plane reflections. We say that 
a polygon with n vertices is p a t  if all its vertices are in no if n is even, or if at most 
one of its vertices is not in no if n is odd. 

It is enough to consider only polygons with an even number of vertices confined 
to the sublattice 2Z2. Dubins et a1 (1988) proved ergodicity of the pivot algorithm in 
two dimensions on the square lattice. We note that all we have to do is to interchange 
our definitions of lattice plane and 45" plane to get to their definitions, since our axes 
are at a 45" angle relative to theirs. So we immediately have the following lemma. 

Lemma 3.1 (Dubins et a1 1988). If inversion and reflections through lattice planes are 
given non-zero probability on the sublattice 2Z2 (with axes defined as above) of the 
FCC, then the pivot algorithm is ergodic for all polygons confined to this sublattice. 
Furthermore, at most n transitions are needed to connect any two such polygons. 

Combining this result with the arguments on polygons with odd numbers of vertices 
provides us with a proof of ergodicity for flat polygons. (However, when n is odd, 
we need 2n transitions to connect any two polygons.) 

3.2. Ergodicity on the FCC 

So far we have viewed the projection of the FCC on the plane no as the union of the 
lattice 2Z2 and its dual. It is convenient to consider the FCC as the lattice generated 
by alternatively stacking copies of 2Z2 and (2Z2)* on each other, each copy with the 
third component an integer. Each vertex in the FCC has twelve nearest neighbours, 
four in the copy of 2Z2 to which it belongs, and four each in the dual lattices (2Z2)* 
in the planes above and below it. 

Suppose that w is a polygon in the FCC. The first, second and third coordinates 
of a vertex oi on o will be denoted by x( oi) ,  y (  w i )  and z( w i ) .  Let Pw be the projection 
on the plane no. In general, Pw is a loop on the lattice 2 Z 2 u  (2Z2)* ( = A ) ,  which may 
intersect itself, as illustrated in figure 1. We now need the following definition. 
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Definition 3.2. If the projection Pw of a polygon w is a convex polygon on A, and if 
every x E Pw is the image of a unique X'E  w under the projection, then we say that w 
is in standard form. We illustrate a polygon in standard form in figure 2. A little 
reflection indicates that a convex polygon on the lattice A has at least three and at 
most eight sides. 

Figure 2. A polygon in standard form. 

Notation. If i < j ,  then [ U , :  w j ]  denotes the segment of the polygon containing 
w , ,  . . . , w j ,  if i > j ,  then [ w i  : w j ]  denotes the piece of w which is the union of 
[ w i : w , ]  and [ w O : w j ] .  

Note that if [al : w j ]  is not a straight line segment, then its projection P [ w l  : U,] can 
only be straight if [wi : w,] is confined to a plane perpendicular to no and normal to 
either the axis e, or the axis e2. If the projection of a segment is straight and inclined 
at 45" to a lattice axis, then the segment itself has to be straight by the geometry of 
the FCC. 

Suppose that w is a polygon that is not in standard form. (We shall deal later with 
standard polygons.) Consider Pw, the projection of w on the plane no (figure 1). Let 
% ( U )  be the boundary of the convex hull of Pw in the plane no. Observe that if X ( w )  
is a line segment, then a 45O-plane reflection, or a 90" rotation, of the entire polygon 
reduces the problem to lemma 3.1; thus henceforth we will assume that %'(U) is a 
non-trivial convex polygon. We define the interior of Pw, Int(w), to be all those points 
in no which cannot be connected to infinity by a cnrve in no that never intersects Pw. 
Let 

a ( w )  = Area{Int(w)} (3.1) 

be the area of Int(w). We define the exterior of Pw, Ext(w), to be the set no- 
(Int(w)uPw).  The 'height' of w, perpendicular to n,, will also play a useful role, 
and we define it as 

K ( W )  = (max I z ( w i )  -min I z ( w i ) ) .  (3.2) 

Lastly, the projected polygon Pw may intersect itself in the plane no. If there are m 
points on w (for definiteness, only consider vertices and midpoints of edges) which 
are projected onto the same point of no, then count this as m - 1 intersections. Let 
the total number of these intersections of w be 

9 ( U )  = number of intersections of Pw. (3.3) 
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Since w consists of n edges of length fi joined at n vertices on the FCC, it is easy to 
check that 

O S  a ( w ) s  n 2 / 8  (3.4) 

0 6  K ( W ) S  n / 2  (3.5) 

O S  $ ( U )  G 2n. (3.6) 

Note that these quantities are invariant under inversion of the lattice through the 
origin, and under lattice plane reflections and 45O-plane reflections of the lattice through 
planes perpendicular to no. Therefore we can choose to leave the origin fixed by 
simply operating on the segment of w not containing the origin in what follows, or 
we can always operate on the shorter of the two segments; all the lemmas will go 
through unchanged. 

The next step is to prove that we can change (by performing a finite number of 
elementary transitions) any polygon w into standard form. There are two cases that 
we shall consider separately. In the first case there exists a z E X ( w )  which is not an 
element of Po. The second case are all those polygons such that X( 0) c Pw and there 
exists a point z E X ( w )  which is the image of at least two vertices in Po. The only 
polygons not classified are those in standard form. Let us now consider these cases 
in turn. 

(i) Suppose that there exists a point z E X ( w )  such that z Pw. In the following 
D, is a small open disc centred at z. Set up a Cartesian coordinate system C with 
origin at z and x axis along the side of X ( w )  containing z. Choose the sign of the y 
axis such that all the points on Po have zero or negative y coordinate. Let w, and w, 
be those vertices on w, i < j ,  such that Pw, and Po, are both on the x axis of C, 
such that the line segment (Pw, ,  PwJ) contains z and such that the vertices 
{ P w l c 1 ,  . . , Po,-,} all have negative y coordinates in C. In particular, all these 
vertices are off the x axis of C. With w,  and wJ as pivots, perform an inversion. The 
resulting polygon w'  is self-avoiding, since each point of P [ w , :  U,], aside from the 
pivots, is reflected to a positive y coordinate in C, i.e. in Ext(w). Two things may 
happen with this pivot transition. Suppose that the curve P[wl : w,] intersects the rest 
of the projected polygon ( P [ w ,  : w , ] )  (excluding Pw, and PwJ). Then $ ( U ' )  is less than 
$ ( U )  by the number of such intersections. If there are no such intersections, then D, 
is contained in Int(w'). By the Jordan-Brouwer theorem (Greenberg and Harper 1981), 
the boundary of Int( w ) must have been the union of the line segment (Po,, Pw,) with 
either P[wJ : w , ]  or P [ w ,  :U , ] ;  hence (Int(w') - D,) contains either Int(w) or a rotated 
image of it. Thus, in the case that 9 ( w )  remains constant under the inversion, the 
area a(o) increases by at least the area of 0,. 

(ii) We now assume that each point in X ( w )  is covered at least once by Po and 
that there exists at least one point z E X(o) which is the image of two vertices in U,  

say, z = Pw, = Pw, with 1 S i < j G n. z is on one of the sides of the convex polygon 
%'(U),  and, by the geometry of A, this side is always parallel, or inclined at 45" to the 
principal axes (e, or e*) in the plane Ilo as set out before. Set up a Cartesian coordinate 
system C on this side in the same manner as we have done above. There are three 
subcases to consider here. 

Subcase a.  P [ w ,  : w,] is contained in the x axis of C. By decreasing j if necessary, we 
can assume that Poi = PwJ = z and Pwk # z for all i < k < j .  Thus Pro, : w j ]  is contained 
in either the positive x axis or the negative x axis. A 45O-plane reflection, or a 90" 
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rotation, with pivots wi  and wj gives a self-avoiding polygon w 1  with P [ w l :  U ; ]  contained 
in the positive y axis of C. Recalling that the boundary of P [ w i  : w j ]  U P [ w j  : wi3 was 
a non-trivial convex polygon, it is not hard to see that $ ( U ' )  < 9 ( w ) .  

Subcase b. P [ w j : o i ]  is contained in the x axis of C. This is exactly analogous to 
subcase a. 

Subcase c. Neither P [ w i  : w j ]  nor P[wj  : w i ]  is contained in the x axis of C. Choose U 

and v such that is U < v 4 j; Po, and Po, both have y coordinate zero (perhaps 
Pw, # Pw,); and Pwk has negative y coordinate whenever U < k C U .  With pivots w, 
and w,, perform an inversion. The resulting polygon, w r ,  must be self-avoiding, as 
argued in case (i), with 9 ( w ' )  s $ ( U ) .  We shall be happy if the number of intersections 
decreases, so assume that 9 ( w ' )  = $ ( U ) .  On the one hand, if Pw, # Po,, then a(@') > 
a ( w )  (since the union of the line segment (Pw, ,  Pw,) with P [ w ,  : w,]  has an interior 
of positive area, as does the union of (Pw, ,  Pw,) and P [ o ,  : w , ] ) .  On the other hand, 
if Pw, = Pw,, then P [ w :  : U : ]  and PEW:: w : ]  are curves which intersect in a single 
point, and which cannot both be line segments (since Pw was a non-trivial convex 
polygon); therefore w r  must belong to case (i)  above. 

Taking these cases now together we have the following lemma. 

Lemma 3.3. Let w be a polygon not in standard form and not contained in any plane. 
Then we can find pivots on w and perform an inversion, or either a 45"-plane reflection 
or a 90" rotation, or two successive inversions, to find a polygon w '  with either (i) 
a ( w ' ) > a ( w ) ,  and 9 ( w r ) S $ ( w ) ,  or (ii) 9 ( w r ) < 9 ( w )  and O S a ( w ' ) s n z / 8 .  

Lemma 3.4. Let w be any polygon, not flat (as defined in section 3.1) or not contained 
in a vertical plane. Then by performing inversions and either 45"-plane reflections or 
90" rotations, we can pivot w into a polygon in standard form. Furthermore, we need 
no more than n3 transitions to complete this task. 

Pro05 We apply lemma 3.3, either reducing $ ( U )  with each pivot, or increasing . (U )  

in at most two consecutive transitions. Since 9 ( w )  and a ( w )  are bounded as in (3.4) 
and (3.6), and since 2 a ( w )  must be an integer, it is easy to see that after at most n3 

0 transitions both these quantities will reach their maxima. 

It remains to show the following result. 

Lemma 3.5. Every polygon in standard form can be transformed via a finite number 
of transitions into a flat polygon. 

ProoJ: We say that a side of %'(U) is 'diagonal' if it is inclined at 45" to the e, and e2 
axes; otherwise, the side must be parallel to one of the axis, and we say that the side 
is 'non-diagonal'. 

SI = {wlw is in standard form and K ( W )  2 I} 

S2 = {w lw is in standard form and K ( W )  = 1) 
S, = { w ( w  is in standard form, K ( W )  s 1, and all non-diagonal sides (if any) of %'(a) 

S,  = {wlw is a flat polygon}. 

To outline our strategy, define four classes of polygons: 

have length 1) 
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We will show that every polygon in SI can be transformed into a polygon in SI+1 for 
i = 1,2,3.  
SI to S 2 .  Suppose that w E SI and K ( W )  3 2 .  Let M =max, { ~ ( w , ) } .  Choose i ,  j such 
that z ( w , )  = z (w , )  = M - 1 and [U ,+ ,  : w , - ~ ]  is contained in the plane z = M. With 0, 

and w, as pivots, perform a reflection through the lattice plane z = M - 1. After at 
most n2/4  repetitions of this procedure, we will obtain a polygon in S 2 .  
S, to S, .  Suppose that w E S2 and P [ w ,  : U,]  is a non-diagonal side of X ( w )  having 
length 2 or more. Since K ( W )  = 1, each consecutive pair of edges in [ w ,  : w,] must be 
mutually perpendicular. On the one hand, if P[o, : w,] has even length, then a 45O-plane 
reflection, or a 90" rotation, with pivots w ,  and w, (into Ext(w)), followed by +( j - i )  - 1 
inversions with pivots w , + ~  and and and and so on, yields a polygon 
in standard form with one less non-diagonal side than w (see figure 3) .  On the other 
hand, if P [ w ,  : U,] has odd length (a3), then apply the above procedure to [ w ,  : w , - ~ ] ,  
followed by an inversion with pivots w ( , + , - ~ , / ~  and w,, yielding a polygon in standard 
form with a non-diagonal edge of length 1 (see figure 4). 
S, to S,. Let w E S 3 .  If P [ w ,  : U,] is a diagonal side of X ( w ) ,  then [ w l  : U,] must lie in 
a plane parallel to no; if P[wk : W k + l ]  is a non-diagonal side, then I z ( w k )  - z (wk+l) l=  1. 
It follows that the number of non-diagonal sides must be even (0 ,2 or 4). If %'(CO) 

has zero non-diagonal sides, then w is already in S, .  
If X ( w )  has exactly two non-diagonal sides, and they are not parallel (see figure 

5 ) ,  then it can be seen that n must be odd, and that a flat polygon can be obtained 
with one inversion (figure 5 ( b ) ) .  

Before we continue, let us consider a small example: n = 4, w 1  = (1,1,0),  w 2  = 
(1,2, l ) ,  w 3  = (0, 1, 1) and w 4 =  (O,O, 0) (see figure 6 ( a ) ) .  This can be transformed in 
a flat polygon U '  with w l  = (1, l,O), O S  = (0,2, 0), w :  = (-1, l,O), w ; =  (O,O, 0) (see 

\ \ 
Figure 3. P [ w ,  : U,] has even length and is a non-diagonal side of %( w ) .  With U ,  and w, 
as pivots, a 4Y-plane reflection, or a 90" rotation, followed by a series of inversions will 
unfold the polygon as shown. 

Figure 4. P [ w , : w , ]  has odd length and is a non-diagonal side of X ( w ) .  The series of 
transitions in figure 3 with w, and U,-, as pivots unfolds the polygons as shown. The last 
step is an inversion which puts the polygon back into standard form. 
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Figure 5. A polygon with an odd number of edges 
in the set S,  can be made flat by a single inversion. 
The arrows indicate the direction in which z 

l a )  lb) 

l a )  lb) I C )  
Figure 6. The polygon with four edges can be folded flat by using only 45O-plane reflections 
as indicated here. It is also possible to use inversions and 90" rotations. 

figure 6 ( c ) )  in two pivots, as follows. First, with pivots w ,  and w 3 ,  reflect through the 
45" plane determined by (1, l,O), (0,1,1) and (O,O, 1) (figure 6 ( b ) ) .  Then perform a 
second 45O-plane reflection with pivots w 2  and w4. We can also perform this in three 
transitions, using a lattice-plane reflection, an inversion and a 90" rotation, as can be 
checked by the reader. 

Now we return to the main task. If % ( U )  has exactly two non-diagonal sides, and 
they are parallel (see figure 7 ( a ) ) ,  then n must be even. Two inversions (figure 7 ( b ) ) ,  
followed by the method of the above example yields a flat polygon (figure 7 ( c ) ) .  

Finally, if X ( w )  has four non-diagonal sides (figure 8 ( a ) ) ,  then n must be even. 
Since K ( W )  = 1, the edges whose projections onto are parallel cannot themselves 
be parallel in R3 (e.g. the leftmost and rightmost edges in figure 8 ( a ) ) .  Then three 
inversions (figure 8 ( b ) ) ,  followed by applying the example above yields a flat 
polygon. U 

We have now finished the proof, and all that remains is to take together the results 
of lemmas 3.1, 3.4, 3.5 and 3.6. 

Figure 7. A polygon in S,  with precisely two non- 
diagonal sides which are parallel. It can be folded 

I U )  lb) IC)  flat by an inversion and the example in figure 6. 

Figure 8. A polygon in S, with four non-diagonal 
sides. Three inversions and the example in figure 6 
can be used to fold it into a flat polygon. 
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Theorem 3.6. The pivot algorithm applied to polygons is ergodic on the FCC lattice, 
providing that we give inversions, lattice plane reflections and either 45O-plane reflec- 
tions or 90" rotations, positive probability of occurrence as elementary transitions in 
the Monte Carlo program. 

4. Initialisation and numerical testing 

The algorithm was programmed on an Apollo 10000 in FORT RAN^. We calculated the 
mean acceptance rate, the mean incidence of inversions, of lattice plane reflections, 
of 45O-plane reflections, and of 90" rotations. We define the square radius of gyration 
of a polygon w to be 

where (f, j j ,  f) is the centre of mass of the polygon, and define the span of a polygon 
to be 

~ ( w )  = 4(max{Ix(wi) -x(uj)l) + max{ly(wi) - Y ( w j ) I }  + max{Iz(wi) - z(wj) l I ) *  (4.2) 
1.J 1.1 1.J 

We calculated the mean square radius of gyration, (r'), the mean fourth power of the 
radius of gyration, ( r4) ,  the mean span, (s) and the mean of the square span divided 
by the square radius of gyration, (s2/ r2).  We also calculated the autocorrelations of 
the last four quantities. The values of n were taken such that log n increases roughly 
linearly in steps of 0.25. 

4.1. Initialisation 

In this section we discuss the initialisation of the MC program. We start the algorithm 
at an arbitrary configuration and discard the first T iterations, choosing T sufficiently 
large that we are confident that when we start to take observations, the process is near 
equilibrium. In this paper we start all our runs from a square configuration. 

To estimate a magnitude for T we studied two global quantities associated with 
polygons, the mean span and the mean square radius of gyration. We performed a 
run with n = 2981, the longest polygons considered in this study. As the initial 
configuration we chose a square in the FCC. The mean span and mean square radius 
of gyration were calculated over blocks of 1000 iterations each, and after roughly 
20 000 iterations these block averages are fluctuating about the mean. In this paper T 
was usually put equal to 150 000. 

We performed a number of short runs to test the method and the program code. 
The results of these runs should agree with known values in the literature. For the 
FCC lattice, the exact enumeration study of Rapaport (1975) is useful in this respect. 
We discarded the first 20 000 observations before we took 100 000 observations for 
polygons with n between 5 and 12. The results showed exceptionally good agreement 
with Rapaport's values. For example for n = 9 we found ( r 2 )  = 1.130(8) while Rapaport 
found 1.128 753. 

4.2. Elementary transformations and acceptance fraction 

Pivots were selected with uniform probability on the polygons. With a given selected 
pair of pivots it is possible to perform a number of elementary transformations, as 
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explained in subsection 2.1. In this study we chose the elementary transformations 
with uniform probability, i.e. if there are N possible transformations then each would 
be chosen with probability 1/ N. 

The first feature of the elementary transformations we consider is the proportion 
of proposed transformations which are of type t ,  where t = i for inversions, t = pf for 
plane reflections, t = p45 for 45O-plane reflections and t = 190 for 90" rotations. Let g , ,  
t = i, pl; p45 or 190, be the fraction of proposed transformations which are of type t. 
We plot g ,  in figure 9 ( a )  for each of the four kinds of transformations. For small n 
most proposed transformations are 45O-plane reflections, but this is soon overtaken by 
inversions as we increase n. Assume that g ,  - n-ri ,  where r, is an exponent. Since 
plane reflection can only take place if the pivots are selected on the same plane, we 
expect that r, = v for t = pf or t = p45. (We assume that the polygon fills a spherical 
volume of radius n ".) Two-parameter least-squares fits to our data indicate that there 
are large corrections to this assumed simple scaling form. For t = pf or p45 we find 
r, near 0.52, but with a very large systematic error (the exponent is strongly dependent 
on the choice of the minimum value of n in our data, the value above corresponds to 
a choice of the minimum value of n at 191). The same situation is apparent for t = 1-90. 
The scaling assumption above is inadequate, and a more careful analysis, taking into 
account correlations between the vertices, is necessary to find the correct scaling law 
for g,. 

00 - 
O D 0  Figure 9. ( a )  The probability that a proposed trans- 

formation is of a specific kind, g,, plotted against 
log n. For small n the proposed transformations are 
dominated by 45O-plane reflections, for larger n, 
inversions dominate. ( b )  The acceptance fractions 
of proposed elementary transformations, A ,  plotted 
against n on a log-log scale. ( c )  The acceptance 

0 - O O D 0  

O O O  0.3 
- 

0 0  
0 0  

I l l l l l J  I 1 1 1 1 1 1 1 1  I 1 1 1 1 1 1 1 1  I 

t 

n n 

1 . O L L  

The second property of the elementary transformations is the acceptance fraction 
of each of the different kinds of transformations. For example, if the transformation 
of type t is proposed, what is the probability, f,, that it will be accepted? We plot f, 
for t = i, pf; p45 and 1-90 on a log-log scale in figure 9 ( b ) .  These plots are straight 
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lines and we can assume that f; - nyi, where y, is an 'elementary transition exponent'. 
Two-parameter linear least-square fits to the data give yi = -0.206 * 0.001 * 0.001, y P f  = 
-0.145~0.005*0.003, y,,, = -0.153+0.003*0.001 andy,,= -0.060*0.010*0.009 for 
the exponents. 

The values of y ,  are given in the format value * systematic error * statistical error. 
The value of any parameter calculated by a least-squares analysis depends on the 
minimum length, n m i n r  (of the polygons) in the data; we compensate for this by 
introducing a systematic error in the following way. We increase nmin until we are 
satisfied that the estimate of the parameter has converged to an acceptable value, say 
at nmin = m. We then consider the successive results for m < nmin < M, where M is 
some cut-off (we chose M = 191). The largest difference between our best estimate 
and the successive results is then taken as the systematic error. This procedure is 
crude, but has the advantage that should we choose m too small, then we will find a 
large systematic error in our results (since correction to scaling will spoil the least- 
squares fit). The value of nmin is chosen, if possible, by increasing it until the parameters 
are within the 95% confidence intervals of estimates with larger nmin .  Then we can 
assume that any increase in nmin will not give an improved estimate of the parameter. 
The statistical errors will always be 95% confidence limits. The error analysis will be 
performed in this way for the rest of this paper. 

We see that, as a general rule, inversions have the least favourable dependence on 
n. For large n, inversions will dominate the proposed transitions, but will be less likely 
to be successful elementary transitions. The 90" rotations are much more likely to be 
successful, if proposed, than plane reflections or inversions in the large-n region. The 
fact that y, = y,,, is not a surprise. Both transitions are reflections through planes and 
depend similarly on the symmetry of the FCC lattice (i.e. operate on only one of the 
three components of the segment of the polygon that is reflected). 

The acceptance fraction of the algorithm plays a major role in the effectiveness of 
MC programs. In particular, a MC algorithm can be rendered useless if the acceptance 
fraction of proposed elementary transitions is so low for the chosen input parameter, 
n, that we have to use large amounts of computer time to sample the system properly. 
The acceptance fraction is the number of successful elementary transformations divided 
by the total number of attempts. If the incidence of a proposed transition t is g,, and 
its acceptance fraction is fi, then f = Z, g,f; is the acceptance fraction of the algorithm. 

While it is known that the acceptance fraction f goes to zero as n goes to infinity, 
it seems that it will do so very slowly with increasing n, and that the algorithm will 
still be very effective, even for large values of n. In figure 9(c) we see that f is very 
large for small n;  if n = 6 then f is in the order of 0.8, and it decreases very slowly to 
about 0.2 if n = 2981. This means that even for these long polygons, roughly one of 
every five proposed transitions is successful. 

A log-log plot off  against n (figure 9(c)) is linear. We therefore expect a simple 
power-law dependence of f  on n. An ansatz that 

f = con-p (4.3) 

and a two-parameter least-squares fit to the data gives 

p = 0.247 * 0.004 * 0.001 CO = 1.22 * 0.03 * 0.01. (4.4) 

To illustrate that there is virtually no concavity in the plot due to values off  at small 
n (and thus no significant corrections to scaling) we discarded all data points to n = 70 
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and repeated the least-squares analysis. We found p = 0.245 * 0.003 f 0.001 and co = 
1.20f 0.03 * 0.01. There is very little numerical evidence of any significant corrections 
to (4.6). This correlates with the results of Madras and Sokal (1988) for the pivot 
algorithm and the self-avoiding walk. The relation between p and the critical exponents 
of polygons is unknown; it is not even known whether p is universal (see appendix A 
in Madras and Sokal 1988). For the self-avoiding walk on the cubic lattice Madras 
and Sokal (1988) report that p w  = 0.107, which is quite different from the result here. 

4.4. Work 

In this section we consider the 'computational efficiency' of the algorithm. We consider 
two quantities. The first is the mean number of operations that we must perform per 
pivot, and the second is the mean number of operations per successful pivot. 

There are several parts of the MC algorithm where the number of operations (amount 
of work) performed for each attempted pivot depends in some way on n. The choice 
of two pivots takes some computation, namely obtaining two random numbers and 
identifying the coordinates of the pivots, but is independent of the number of vertices 
in the polygon (since the coordinates of w are stored in an array). In contrast to this, 
if we check a proposed configuration for self-intersections, then it seems plausible to 
suppose that the number of vertices to be checked does depend in some way on n. In 
our program we read vertices near the pivots first into the hash table. If a configuration 
intersects itself, then we believe that it will mostly be near the pivots. Madras and 
Sokal(l988) claim that by using this scheme, the rejection of intersecting configurations 
will take O( n ' - " $ )  operations, but every successful transition will take O( n) operations. 
In our algorithm we identified several sources of 'work'. Once we have chosen two 
pivots, say r ,  and r z ,  they are: proposing a new configuration, checking that it is 
self-avoiding, and resetting the hash table. Finally, if the proposed configuration is 
accepted, then updating the old configuration is another source of work. 

In order to check the computational efficiency of the algorithm, we performed a 
series of short runs (50 000 iterations) and measured the amount of work. The results 
are set out in table 1. Consider first the results of work per attempted pivot. It seems 
reasonable to propose a dependence 

work per attempted pivot = Con" (4.5) 
where w is a 'work-exponent' of the MC algorithm. To test this hypothesis we plotted 
the work per attempted pivot against n on a log-log scale. The plot is linear. A 
two-parameter least-squares fit to the data in table 1 gives (for the parameters in (4.5)) 

(4.6) 
Since a successful transition occurs roughly every f-' iterations, we expect from 

(4.7) 
where w + p  = 1.105*0.008 (we add the systematic and statistical errors). A least- 
squares fit to the second set of data in table 1 gives 

(4.8) 
close to the expected values. On the square lattice for random walks Madras and 
Sokal (1988) report that the mean work per successful pivot is about O ( n ) .  That is 
better than the O(n""P) found here. 

w = 0.858 f 0.001 * 0.002 CO = 2.88 10.03 * 0.04. 

(4.3) and (4.5) that 

work per successful transition = Con H+P 

w + p = 1.099 * 0.003 i 0.002 CO = 2.46 f 0.06 * 0.03 
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Table 1. The average work per pivot, the average work per successful pivot and the 
acceptance frequency f as functions of the polygon length n. 

n Work/ Pivot Work/ (Successful pivot) f 

6 
7 
8 
9 

10 
12 
16 
20 
26 
33 
43 
55 
70 
90 

116 
148 
191 
245 
314 
403 
518 
665 
854 

1097 
1408 
1808 
2322 
2981 

11.93 (2) 
13.86 (2) 
15.93 (3) 
17.98 (3) 
19.71 (3) 
23.53 (4) 
32.11 (6) 
37.79 (8) 
48.6 (1) 
60.1 (1) 

98.1 (3) 
111.8 (3) 
138.6 (4) 
172.6 (5) 
211.1 (7) 
262.9 (9) 
331 (1) 
397 (1) 
492 (2) 
609 (2) 
750 (3) 
930 (4) 

1155 (5) 
1424 (6) 
1801 (8) 
2290 (10) 
2850 (10) 

73.4 (2) 

15.28 (3) 
18.41 (4) 
21.80(5) 
25.25 (5) 
28.41 (6) 
35.53 (8) 
52.1 (1) 
64.8 (1) 
89.0 (3) 

116.8 (4) 
152.6 (5) 
217.1 (7) 
262.6 (9) 
347 (1) 
458 (2) 
598 (3) 
791 (4) 

1062 (5) 
1352 (6) 
1783 (9) 
2 340 (10) 
3 070 (20) 
4 030 (20) 
5 340 (30) 
6 700 (40) 
9 400 (60) 

12 610 (80) 
16 800 (100) 

0.7807 (3) 
0.7530 (3) 
0.7307 (3) 
0.7119 (3)  
0.6938 (3) 
0.6623 (3) 
0.6159 (3) 
0.5836 (4) 
0.5458 (4) 
0.5144(4) 
0.4809 (4) 
0.4519 (4) 
0.4257 (4) 
0.3994 (4) 
0.3767 (3) 
0.3534 (3)  
0.3325 (3) 
0.3125 (3) 
0.2934 (3) 
0.2758 (3) 
0.2603 (3) 
0.2440 (3) 
0.2309 (3) 
0.2163 (3) 
0.2036 (3) 
0.1916 (3) 
0.1814 (3) 
0.1701 (3) 

5. Numerical results 

5.1. Autocorrelation functions 

In order to give error bars on quantities calculated in a MC study like this, we must 
calculate the autocorrelation functions of several observables (see subsection 2.2). 
Since the algorithm simulates polygons when the Markov chain is almost stationary, 
it is the integrated autocorrelation times (equation (2.7)) in which we are interested. 

It is difficult to calculate quantities like the autocorrelation functions by a means 
of a MC calculation. Noise in the data soon makes any measurement unreliable. From 
a sample size of N observations, the natural estimator of ( 2 . 7 )  is 

A is the sample mean of an observable d which is measured after each iteration, 
producing a random sequence of estimates { A i } .  Because p^( t )  is mostly noise when r 
is large, it is much better to use a 'window' A ( t )  in (5.1), where h ( t ) = l  if I t l s q n t ,  



The pivot  algorithm and polygons 1605 

and 0 otherwise. We calculated T,,, using this approach. A batch job of mN iterations 
was divided into m blocks of N iterations each, where N >> T ~ , , ~ .  qn, is then calculated 
for each of the m blocks, using equation (5 .1 ) .  The window A ( t )  was defined in the 
following way. Let to be the largest number such that ; ( t )  b O  for all l 6  t o .  Then 
A ( 1 )  = 1 for all t 6 to and 0 otherwise. In particular, even though p (  t )  2 0, we found 
in practice that a statistical measurement of p may be negative if we increase t. Thus 
if we write 

1 N - l  

2 f = - ( N - i )  
+,,,(A)=- ~ ( t ) l j A a ( t )  (5.2) 

then we only add all those terms up to the first negative term. Since we bias (5.2) in 
favour of terms with positive noise, we expect that this procedure will produce a slight 
overestimate of the autocorrelations. 

Since we have assumed that N >> qn,, we can assume that each of the m blocks of 
data is producing an independent estimate of T~,,, (we chose N at least 100~~,,,  and in 
general much larger). Therefore we can calculate a mean autocorrelation time by 
simply taking an average over the blocks of data. The first autocorrelation calculated 
was that of the acceptance fraction f: Over 50 000 iterations we put N = 250 and 
m = 200 in the above analysis. We found that qnt(f) decreases in general with increasing 
n, from qnt(f )  = 0.70* 0.02 for n = 6 to qnt(f) = 0.63 3~0.01 for n = 2981 (95% confidence 
limits). This short autocorrelation time indicates that the acceptance or rejection of a 
particular proposed configuration is weakly dependent on whether the last transition 
was successful. 

The autocorrelation times of the elementary transitions were calculated in the same 
runs. If we calculate the incidence of inversions by putting i = 1 if an inversion was 
successful and 0 otherwise, then qnt( i) decreases steadily from 0.65 f 0.02 for n = 6 to 
0.64i0.02 for n = 2981. Similarly, we can calculate the autocorrelations of the other 
elementary transitions; they are all short (no bigger than 0.7) and tend to decrease as 
n is increased. 

Of greater interest to us are the autocorrelations of global properties like the span 
and the mean square radius of gyration. To this end, we chose N = 10 000 and m = 50 
and calculated the autocorrelations of the mean square radius of gyration ( T~,,( r ’ ) ) ,  
the mean span (Tint(S)), the mean fourth power radius of gyration (qn,(r4)) and the 
mean of the ratio of the square span and square radius of gyration (qn,(s2/r2)). 
( N  = 1000 was found to be too small; increasing it to 10 000 increased the estimates 
of the autocorrelations significantly for n = 2981. Increasing N to 20 000 did not 
produce estimates significantly different from those at 10 000. We concluded, therefore, 
that 10000 is a suitable choice for N.) The results are plotted in figure 10. 

It is reasonable to expect that the autocorrelation of a global quantity should be 
inversely proportional to the acceptance fraction f: In fact, we expect that after every 
few successful transitions that we will find a new ‘independent’ configuration. From 
equation (4.3) and figure 10 we postulate that 

qnt(A) = Conq‘A’ (5.3) 
where q ( A )  is an exponent, possibly different for each global observable and where 
we expect that q ( A ) * p .  A two-parameter least-squares fit to the data gives 

q ( r 2 )  = 0.27 * 0.02 f 0.02 q (  r4) = 0.3 1 f 0.02 f 0.02 
q( s) = 0.29 f 0.03 f 0.02 q ( s 2 /  r 2 )  = 0.23 f 0.02 f 0.02. 

(5.4) 
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c 

Figure 10. Autocorrelation times of global observ- 
ables. For n 2 70 the curves flatten out to become 1 x) 100 1000 

R roughly linear. 

1 

These results are all, within statistical error, greater than p .  The small values of q ( A )  
implies that 7int( A )  increases slowly with n, making the algorithm particularly useful 
for the simulation of long polygons. 

5.2. The mean square radius of gyration and the mean span 

The results from our main MC runs are summarised in table 2. We calculated the mean 
square radius of gyration, (r’) , , ,  the mean fourth power of the radius of gyration, (r4), , ,  
the mean span, (s),,, and the mean square span divided by the mean square radius of 
gyration, ( s 2 / r z ) , , ,  for n ranging from 6 to 2981 spaced such that log n is incremented 
by 0.25 from approximately 1.75 to 8.00. 

5.2.1. Mean square radius of gyration. The mean square radius of gyration of polygons 
on the FCC was considered by Rapaport (1975), using an exact enumeration scheme. 
In general it is believed that (r’) , ,  should scale as a simple power law with n, but it is 
known that strong corrections can be expected to this behaviour (Wegner 1972). From 
field theoretic considerations (Le Guillou and Zinn-Justin 1980, 1989) it seems reason- 
able to suspect that 

( r2 ) , ,  = n 2 ” ( A + B n - * +  C n - ’ + o ( n - ’ ) )  ( 5 . 5 )  

where A ,  B and C are lattice-dependent constants, while A is the correction-to-scaling 
exponent. This form allows for both an analytic and a non-analytic correction to scaling. 

Ideally, one would like to estimate the five parameters in ( 5 . 5 )  directly from the 
MC data without further assumptions. However, the data are not sufficiently accurate 
to make this viable; in general it is found that the numerical procedures are unstable. 
We begin, therefore, by estimating v by plotting ( r 2 ) ,  against n on a log-log scale in 
figure 11. The plot is linear and suggests that a least-squares fit will produce 2v. Our 
best estimates are 

v = 0.593 * 0.003 * 0.002 A =0.167*0.020*0.001. (5.6) 
The value for v compares well with results in the literature; Madras and Sokal (1988) 
found 0.592 * 0.003 for the self-avoiding walk by using the pivot algorithm. The series 
analysis method of Guttmann (1987) gives 0.592 f 0.002 while Rapaport (1975) found 
0.592 * 0.004. 

Although all these numerical estimates agree to a high accuracy, they are all 
systematically larger than the field theory estimates of Le Guillou and Zinn-Justin 
(1980, 1989) ( v  = 0.588*0.002 and A =0.470*0.025). An examination of the curve 
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Table 2. The values of global quantities calculated with the pivot algorithm. 

Number of 
n iterations ( r') ( r4? (S? (s'/ r 2 )  

6 
7 
8 
9 

10 
11 
12 
14 
16 
20 
26 
33 
43 
55 
70 
90 

116 
148 
191 
245 
314 
403 
518 
665 
854 

1097 
1408 
1808 
2322 
2981 

4.0 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x IO6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x IO6 
2.5 x IO6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x lo6 
2.5 x IO6 
2.5 x lo6 
3.0 x lo6 

1.418 (2) 
1.696 (3) 
1.976 (3) 
2.258 (4) 
2.550 (5) 
2.896 (6) 
3.150 (6) 
3.772 (7) 
4.407 (9) 

7.84 (2) 
1.041 ( 3 ) x  10' 
1.426 (4) x 10' 
1 . 9 1 2 ( 6 ) ~ 1 0 '  
2.547 (8) x 10' 

4.65 (2) x 10' 
6.21 (2) x 10' 
8.41 (3) x 10' 
1.130 (4) x lo2 
1.512 (6) x 10: 
2.041 (8) x 10' 
2.75 (1) x lo2 
3.68 (2) x I O 2  
4.98 (3) x 10' 
6.65 (4) x 10' 
8.95 (5) x 10' 
1.199 (6) x lo3 
1.612 (8)  x lo3 

5.74 (2) 

3.44 ( 1 )  x 10' 

2.17 ( I ) X  io3 

2.568 (5)  
3.73 (1) 
5.130 (2) 
6.80 (3) 
8.75 (3) 
1.138 (4) x 10' 
1.351 (5) x IO' 
1.955 (8 )  x 10' 
2.69(1)x101 
4.60 (2) x 10' 
8.65 (5) x 10' 
1.53 (1) x 10' 
2.89 (2) x lo2 
5.22 (3) x lo2 
9.32 (6) x lo2 
l . 7 0 ( l ) x l O 3  
3.14 (2) x io3 
5.60 (4) x io3 

1.865 (2) x io4 
3.33 (3) x io4 

1.11 ( I ) X  105 
1.99 (2) x io5 
3.64 (4) x io5 

2.11 ( 2 ) x  lo6 

1.032 (8) x lo4 

6.09 (6) x lo4 

6.51 (6) x lo5 
1.18(1)x106 

3.87 (4) x lo6 
6.95 (9) x I O 6  

1.8412 (3) 
2.0756 (7) 
2.3125 (5) 
2.5397 (3) 
2.7514(5) 
2.9907 (6) 
3.1605 ( 7 )  
3.538 (1) 
3.894 (2) 
4.570 (2) 
5.483 (2) 
6.446 (2) 
7.693 (3) 
9.045 (4) 
1.059 (5) x 10' 
1.2432 (7) x 10' 
1.4619 (7) x 10' 
1.7031 (9) x 10' 
1.998 ( 1 )  x 10' 
2.332 (2) x 10' 
2.712 (2) x 10' 
3.167 (2) x 10' 
3.691 (3) x 10' 
4.292 (3) x 10' 
5.000 (4) x 10' 
5.809 ( 5 )  x 10' 
6.753 ( 5 )  x 10' 
7.843 (7) x 10' 
9.125 (7) x 10' 
1.059 (9) x lo2 

2.5928 (8 )  
2.780 ( I )  
2.949 (1) 
3.087 (1) 
3.207 (1) 
3.325 (1) 
3.401 (1) 
3.559 (1) 
3.688 (1) 
3.887 ( 2 )  
4.097 (2) 
4.263 (2) 
4.432 (2) 
4.572 (2) 
4.693 (2) 
4.805 (2) 
4.900 (2) 
4.986 (2) 
5.066 (2) 
5.132 (2) 
5.193 (3) 
5.246 (3) 
5.292 (3) 
5.338 (3) 
5.368 (3) 
5.407 (3) 
5.438 (3) 
5.462 (3) 
5.486 (3) 
5.500 (3) 

Figure 11. ( r ' ) ,  against n on a log-log scale. The 
error bars are too small to show up  on this scale. 

0.1L-I 
1 ll 100 m 10000 

n 

fitting procedure indicates that v increases with n m i n  from 0.591 for nmin  = 6, to 0.593 
for nmin  = 5 5 ,  exposing a slight convexity in the curve in figure 1 1 .  This is also illustrated 
in a plot of ( r 2 ) , / n 2 "  (where Y is given its MC value) against l / n  in figure 12(a) .  If 
we expect only an analytic correction to the assumed scaling form ( 5 . 9 ,  then the plot 
should be linear. Instead we see a sharp curve for large n. 
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0.16841 I I I I I 

t 
0.1666k 

l h  

0.1781 fha I 1 
n-' 

Figure 12. ( a )  ( r 2 ) " / n 2 "  against n-' for Y =0.593. For small n the curve is roughly linear, 
but it curves sharply down as we increase n. This indicates that we are neglecting a confluent 
singularity which dominates the n-' term for larger n. ( b )  ( r 2 ) , , / n 2 '  against n-' for 
Y = 0.588. The curve goes through a minimum before it flattens out to become linear for 
larger n. This is strong evidence that a confluent correction to scaling of order n-' is 
present in the data. 

In figure 12(b), we plot ( r 2 ) n / n 2 v  against n-& for the field theory values of the 
exponents. The plot is dramatically different from figure 12(a). For small n, it goes 
through a minimum, indicating that the analytic and non-analytic corrections have 
opposite signs in ( 5 . 5 ) ;  as n is increased the plot becomes linear. We interpret this as 
strong support for equation ( 5 . 5 )  with the field theory values of the exponents. (Of 
course, small changes in these will not alter the curve significantly.) We can estimate 
the values of the coefficients in ( 5 . 5 )  by a linear least-squares fit (since we are interested 
in the corrections to scaling here, we choose n m i n  = 6 and we do not attempt to find a 
systematic error): 

A = 0.179 * 0.005 B = -0.0640 f 0.0006 C = 0.13 *0.01 (5.7) 
where the errors are 95% confidence limits. 

scaling behaviour similar to that in equation ( 5 . 5 ) .  If we suppose that 
The mean fourth moment of the radius of gyration of polygons is expected to have 

( r 4 ) ,  = C'nY4 (5.8) 
then the results of Rapaport (1975) suggest that y4 = 4u. To test this, we performed a 
two-parameter least-squares fit to the data. We find 

y4 = 2.375 * 0.004 * 0.004 

close to the number 4u = 2.37210.016. 

C' = 0.0400 * 0.0004 * 0.0004 (5 .9 )  

5.2.2. Mean span. The span of polygons and self-avoiding walks have received little 
attention in the literature (Bellemans 1973a, b, Privman and Rudnick 1985). If we 
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assume that there is only one length scale for polygons, then we can use the results 
from the mean square radius of gyration to assume that 

(5.10) (s), = n”(u + bn-*+ cn-’ +o(n-I)) .  

A comparison of (5.5) and (5.10) suggests that 

(s2/r2), = a +on-*+ yn-’+o(n-l) .  (5.11) 

It is believed that a is a universal constant. For self-avoiding walks McCrackin et a1 
(1973), Rapaport (1985) and Madras and Sokal(l988) studied the analogous situation 
for the mean end-to-end length and the mean square radius of gyration. 

To study the assumption (5.11), we plotted (s2/r2), against n-* in figure 13. The 
ratio appears to approach a finite value as we increase n. This implies that the exponent 
governing the large-n behaviour is identical for both the mean square span and the 
mean square radius of gyration. Moreover, the linear behaviour suggests that the field 
theoretic value of the confluent singularity fits the data well. There is no turning point 
in this curve, so we expect that the analytic correction term must have a small amplitude 
compared to the confluent term. A least-squares analysis gives 

a = 5.69 * 0.02 /3 = -7.50* 0.01 y = 0.6*0.1 (5.12) 

with 95% confidence limits and where a is a universal number. 
Closely related to the ratio studied above is 

(5.13) 

We expect that a‘ is also universal. We calculated the ratios from table 2. In (5.13) 
we calculated error bars by a triangle inequality. A least-squares analysis gives (95% 
confidence limits) 

a’=5.3*0.2 p’  = -6.9 * 0.1 7’ = -0.3 5 0.4. (5.14) 

These results strongly suggest that the exponents v and A are universal. We can now 
perform the same analysis for the span as for (r’) to determine numerical values from 
our data for v. However, an attempt to perform a two-parameter linear fit to calculate 
v fails because the corrections to scaling are too large. Assuming that (s), = an” reveals 
that the parameters a and v are so strongly dependent on the choice of nmin  that we 
are unable to make a best estimate for the parameters as we have done from (r’) .  

However, the MC data are consistent with the theoretical results of Le Guillou and 
Zinn-Justin (1980, 1989). A plot of (s),/n” against n-A (figure 14) is linear, suggesting 



1610 E J Janse van Rensburg, S G Whittington and N Madras 

Figure 14. ( s ) , ! / n ”  against n-A for v=0.588. The 
linear nature of this plot suggests that KA takes care 
of virtually all the corrections to scaling in the mean I 1 1 

0 0.11 0.22 0.33 0.44 
0. 

n- span. 

O.;t 

little analytic corrections to scaling. There is, however, as expected from the arguments 
above, a large confluent term. A least-squares analysis gives 

a = 0.978 * 0.003 

with 95% confidence limits. 

b = -0.798 * 0.001 c = 0.040 * 0.007 (5.15) 

6. Conclusions 

In this paper we considered the pivot algorithm for polygons on the face-centred cubic 
lattice. This algorithm has proved to be very effective for self-avoiding walks on the 
cubic lattice. We proved that the algorithm for polygons is ergodic on the FCC provided 
that we give a set of elementary transitions positive probability of occurrence. It is 
now known that the pivot algorithm for polygons is ergodic on the hypercubic (Madras 
et a1 1989) and on the FCC lattice (this work). Little is known about other lattices 
such as the tetrahedral lattice, which has a different symmetry group from the cubic 
lattices. 

The second major aim of this paper was to generate some numerical data on 
polygons in three dimensions. The numerical studies of polygons in the canonical 
ensemble in the past have been limited to exact enumeration and to generating polygons 
by simulating random walks. In the grand canonical ensemble most studies are limited 
to a local elementary transition (Berg and Foester 1981, Aragao de Carvalho e f  a1 
1983), an approach which suffers from long auto-correlation times (Sokal and Thomas 
1988) and which is not ergodic, since it preserves the knot class of a polygon (Madras 
and Sokal 1987). These problems can both be overcome by supplementing the elemen- 
tary transformations by a pivot transition, such as inversion (Caracciolo et a1 1989). 

The main conclusions we can draw from our work are the following. 
(i)  We found that the acceptance fraction of the pivot algorithm goes to zero 

slowly; f- n - P .  We found the value of p to be roughly a. This value is different from 
the analogous value for self-avoiding walks on the cubic lattice. It is not clear whether 
this difference is due to the lattice (that p is a lattice-dependent number), or due to 
the fact that we are dealing with polygons, or both. The relative incidence of the 
elementary transitions is important. We see that inversion dominates the transitions 
for large values of n ;  this fact is possibly partly responsible for the longer autocorrelation 
times that we see for longer walks (since inversions alone does not suffice for ergodicity). 
For smaller n, 45O-plane reflections dominate the transitions. 
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( i i )  We defined a work exponent w as a measure of the computational efficiency 
of the algorithm. We found that the number of operations required to produce a new 
configuration is n w + p ,  where w + p  = 1.1. This is more than the O ( n )  operations needed 
in the case of the self-avoiding walk, but is a vast improvement on previous efforts for 
polygons. The autocorrelations of the global quantities that we calculated (one 
effectively independent polygon for every eighty attempts at n = 2981) are very short, 
and we conclude that the algorithm is extraordinarily efficient in the simulation of 
polygons. 

(iii) The numerical data are completely consistent with the expected values of the 
critical exponents from the literature. However, our analysis also indicates that a 
two-parameter fit to data containing corrections to scaling can be very deceptive. While 
we found that the parameters converge rapidly to values insensitive to nmin in the case 
of ( r ’ ) ,  it is nevertheless not the field theory values that we find, even with polygons 
as long as those studied in this paper. To resolve this issue it is necessary to perform 
a five-parameter fit to ( 5 . 5 ) ,  although there is no guarantee that this will work, since 
higher-order corrections to scaling may still contaminate the data to make this imposs- 
ible. We do show, however, that the data presented here are completely consistent 
with field theory, provided that we take corrections to scaling into account. 

(iv) With the span of the polygons we find that the confluent correction to scaling 
is so strong that it is not possible to perform a two-parameter fit to determine its 
associated scaling exponent. Figure 14 illustrates the dominance of the confluent term 
in the correction and this is borne out by the least-squares fit to find the amplitudes 
of the terms in (5.10). The span and the square radius of gyration do define the same 
length scale, as we see from figure 13. The ratio (sZ/?) goes to a constant a as n goes 
to infinity. The number a is believed to be lattice independent. 
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